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Human-in-the-loop optimization of hip assistance with
a soft exosuit during walking
Ye Ding,1,2* Myunghee Kim,1,2* Scott Kuindersma,1† Conor J. Walsh1,2†

Wearable robotic devices have been shown to substantially reduce the energy expenditure of human walking. How-
ever, response variance between participants for fixed control strategies can be high, leading to the hypothesis that
individualized controllers could further improve walking economy. Recent studies on human-in-the-loop (HIL) control
optimization have elucidated several practical challenges, such as long experimental protocols and low signal-to-noise
ratios. Here, we used Bayesian optimization—an algorithm well suited to optimizing noisy performance signals with
very limited data—to identify the peak and offset timing of hip extension assistance that minimizes the energy ex-
penditure ofwalkingwith a textile-basedwearable device. Optimal peak andoffset timingwere foundover an average
of 21.4 ± 1.0min and reducedmetabolic cost by 17.4 ± 3.2% comparedwithwalkingwithout the device (mean ± SEM),
which represents an improvement of more than 60% on metabolic reduction compared with state-of-the-art devices
that only assist hip extension. In addition, our results provide evidence for participant-specific metabolic distributions
with respect topeak andoffset timingandmetabolic landscapes, lending support to thehypothesis that individualized
control strategies can offer substantial benefits over fixed control strategies. These results also suggest that this
method could have practical impact on improving the performance of wearable robotic devices.
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INTRODUCTION
Wearable robotic devices have demonstrated the potential to enhance
human economy and endurance (1–3). Recent breakthroughs in wear-
able robotics have substantially reduced energy expenditure in human
walking using both passive (1) and active autonomous (2–4) or tethered
(5–11) devices. In particular, advances in active devices provided flexi-
bility to regulate assistance control parameters related to timing (5, 7, 10),
magnitude (6, 12), or delivered power (12, 13). Studies have shown that
control strategies can significantly affect performance (4–7, 10, 12),
which raises questions about how to reliably and efficiently design op-
timal controllers. Assistive strategies have commonly been derived from
simulations (14, 15) and biomechanicalmeasurements (10, 16) or tuned
manually based on average responses (11). Specifically, there is a growing
interest in designing control strategies usingmusculoskeletal simulations
(14, 17), and recently, this approach has shown promise in guiding as-
sistive profiles for running (14, 18). However, physiological and neuro-
logical differences between individuals can cause divergent responses to
an identical controller, that is, one participant’s optimal control strategy
may perform poorly on another (5–7, 10, 19). Thus, although generic
musculoskeletal simulations may provide general guidelines on assist-
ance, participant-specificmodelsmay be required when considering how
to find optimal system parameters for individualized assistance.

Conventionally, discrete step (1, 4–7) and continuous sweep (20, 21)
protocols have been used to investigate a participant’s performance and
to explore the landscape of control parameter settings for wearable
robotic devices. With these approaches, metabolic cost is measured by
varying a control parameter in either a discrete or a continuousmanner.
A curve fitting process is then followed to identify the optimal parameter
value that results in themaximummetabolic benefit (1, 5–7, 20, 21). Un-
fortunately, both continuous and discrete protocols involve a lengthy
evaluation process, and the time required increases exponentially with
added control parameter dimensions. Long walking times in protocols
may affect the accuracy ofmetabolicmeasurements due to high exertion
or fatigue, which in turn leads to cardiopulmonary drift (22), especially
for clinical populations who may not be able to sustain long walking
bouts (23).

Human-in-the-loop (HIL) optimization aims to address the afore-
mentioned challenges in protocol length by adjusting control param-
eters based on real-time measurements of human physiological
signals, such as metabolic cost. This optimization is inspired by an ob-
servation of humans continuously adjusting their coordination pattern
tominimize themetabolic cost of walking (24) and expands the concept
to wearable devices. Some promising efforts in this domain have re-
cently demonstrated the ability to optimize both single and multiple
control parameters using ankle exoskeletons (8, 9). In these cases, sub-
stantial metabolic reductions were achieved with the optimal parameter
settings identified by either a one-dimensional (1D) gradient descent
method using a pneumatically actuated ankle exoskeleton for a fixed
50 min (9) or a 4D Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) with an electromechanically actuated ankle exoskeleton for
83 ± 14 min (mean ± SEM) (8). Although these achievements are im-
pressive, there remainopportunities to explore differentwearable assistive
hardware, control parameterizations, applications to other joints, and
alternative optimizationmethods that could improve sample efficiency.

We developed an experimental method to rapidly identify optimal
control parameters in a 2D space that minimized the metabolic cost of
walking (Fig. 1). This was achieved through the use of Bayesian optimi-
zation, an efficient global optimization strategy that is well suited to find
theminimaof objective functions that are noisy and expensive to evaluate
(25–27). In a previousHIL study that optimized step frequency, we found
that Bayesian optimization converged in half the time of a gradient
descent method (28). For the current HIL scheme, a participant walked
with hip extension assistance applied via a soft exosuit (Fig. 2A), a
textile-based wearable device designed to apply forces across joints in
parallel with humanmuscles (10, 29). The assistive profile was configured
by multiple control parameters that were iteratively updated by the opti-
mization and applied to the participant using a tethered actuation system
with admittance force control (29). The optimization was initialized by
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Fig. 1. Experimental setup for HIL Bayesian optimization. Bayesian optimization was used to adjust the control parameters of an assistive device to minimize the metabolic
cost of walking. Themetabolic rate was estimated from respiratory measurements and used to compute a posterior distribution of metabolic rate with respect to the free control
parameters. The posterior was initially generated by evaluating six prefixed control parameters. Given the posterior at the current iteration, the control parameters withmaximum
EI were chosen and applied to the wearable device. This process was repeated until convergence. During this process, the configured force profiles were delivered through a soft
hip exosuit with a tethered actuation system.
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Fig. 2. Soft exosuit and assistivehip force profile. (A) Thehip soft exosuit. A hip extensionmomentwas generated by pulling the inner cable to create a tension between two
anchor points. (B) Parameterization of hip force profile. The hip force profilewas chosen tobe a combination of two parameterized sinusoidal curves joined at the peak. Peak force
was set to 30%of bodyweight, andonset timingwas fixed to the timeofmaximumhip flexion. Peak andoffset timingwere actively adjustedby the optimization to determine the
shape of the force profile as a function of gait percentage. Shaded purple and blue bars represent the range of peak and offset timing, respectively. (C) Examples of feasible hip
force profiles.
Ding et al., Sci. Robot. 3, eaar5438 (2018) 28 February 2018 2 of 8
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obtaining the metabolic cost of a prescribed number of assisted con-
ditions with respect to pseudo-randomly selected control parameters
from an evenly distributed parameter space. On the basis of this in-
formation, the optimization iteratively estimated the participant’s meta-
bolic cost distribution using a Gaussian process (fig. S1) (30) and selected
control parameters for the next iteration bymaximizing the expected im-
provement (EI) (25, 26). At each iteration, the metabolic cost was esti-
mated by fitting a first-order dynamic model to 2 min of transient
metabolic data (31). After a set number of iterations, the control param-
eters corresponding to the minimum value of the metabolic landscape
(the mean of the metabolic cost distribution) represented the optimal
values.

The hip assistive profile was a combination of two halves of sinus-
oidal curves joined at their peaks. This profile was defined by two fixed
parameters (peak force andonset timing) and two free parameters (peak
timing and offset timing; Fig. 2B) that were adjusted by the optimization
method. We fixed peak force to 30% body weight to ensure comfort
during the long walking test while still maintaining assistance high
enough to achieve sufficient metabolic reduction. Previous work dem-
onstrated that higher assistance magnitude resulted in larger metabolic
benefits for both hip (10, 11) and ankle (6), and the forces we evaluated
here were approximately within the range of previous evaluations. We
also fixed the onset timing at the maximum hip flexion event based on
previous hip studies, which showed the largest metabolic reductions with
onset timing set close to maximum hip flexion (7, 10). Further, we found
less intraparticipant variability ofmetabolic cost and lower signal-to-noise
ratio when varying onset timing in our pilot testing (table S1). For the
purposes of this study,wedefined the start of the gait cycle using themax-
imum hip flexion event. Peak and offset timing were bounded within
15 to 40% and 30 to 55%, respectively, in this newly defined gait cycle. It
is worth noting that the maximum hip flexion event was on average
at 86.2% of the conventional gait cycle, defined with heel strike as 0%
(table S2). The offset timing was constrained to occur at least 15% later
than the peak timing. The range and constraint of peak and offset timing
(Fig. 2C) were chosen by slightly extending the average range of the
biological hip extension moment (32) while considering limitations
on the ramp-up speed of assistance that our soft exosuit was capable
of achieving. This configuration was able to shape our profiles similar
to the hip assistive profiles used in previous assistive device studies
(4, 7, 10, 11).
Ding et al., Sci. Robot. 3, eaar5438 (2018) 28 February 2018
We conducted a single-day experiment on eight participants
(table S3), optimizing the assistance timings as they walked on a
treadmill at 1.25 m s−1. For the optimization, 6 iterations (six pairs of
peak and offset timing) were evaluated for the optimization initializa-
tion and 14 iterationswere followed to adjust the tuning. These numbers
of iterations were chosen based on our simulation results (fig. S2). After
optimization, we performed a validation test confirming the optimal
condition found during the optimization process, then compared both
optimal condition and validation test with a no-suit condition. The
primary analysis included (i) the net metabolic cost of walking, defined
as the gross metabolic rate during walking minus the rate measured
during quiet standing; (ii) the convergence time across participants;
(iii) participant-specific optimal timings; (iv) participant-specific opti-
mal assistive profiles; (v) participant-specific metabolic landscape,
defined as the mean of the metabolic cost distribution with respect
to the peak and offset timing alongwith participant-specific probability
of improvement landscape, interpreted as the likelihood of exceeding
the largest metabolic reduction.
RESULTS
Metabolic rate
Participant-specific optimal assistance substantially improved energy eco-
nomy for all participants by reducing the net metabolic cost of walking
to 2.26 ± 0.13 W kg−1 and 2.27 ± 0.18 W kg−1 for the optimal and
validation conditions, respectively, from 2.75 ± 0.18W kg−1 for the no-
suit condition (mean ± SEM). Netmetabolic reduction of the validation
condition ranged from 6.7 to 33.9%, with an average reduction of 17.4 ±
3.2% (mean ± SEM; paired t test, P = 0.003; Fig. 3A and table S4).

Convergence time
The optimization converged for all participants during the optimization
process (fig. S3). The convergence time was on average 21.4 ± 1.0 min
(mean ± SEM), ranging from 18 to 24 min.

Optimal timing
Participant-specific optimal peak and offset timings spread over about
half of the feasible region of the control parameters (Fig. 3B). Most of
the optimal timingswere on the boundaries of theparameter ranges,with
three participants having their optima at the latest peak and offset timing.
 2018
Fig. 3. Experimental results. (A) The net metabolic rate for each condition. Optimal: Minimum mean value of the posterior distribution (metabolic landscape). Validation:
Metabolic rate of 5-min walkingwith optimized assistance. No-suit: Metabolic rate of 5-minwalking with a regular pair of pants. Bars aremeans, error bars are SEMs, and asterisks
denote statistical significance. (B) Feasible parameter region and optimal timing values for all participants. Optimal timings were varied across participants, and three participants
shared the same optimal timings at the latest peak and offset timing. (C) Optimal assistive force profiles for participants 3, 4, and 6. Dashed and solid lines are reference and
measured forces normalized by bodymass, averaged across 10 strides during the lastminute of the validation condition. Themaximumhip flexion event was used to initialize the
gait cycle in this study.
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Optimal assistive force profile
For the validation condition, the averaged delivered peak force was
215.6 ± 10.1 N (2.84 ± 0.02 N kg−1, mean ± SEM). The average root
mean square error of the optimal assistive force tracking of the valida-
tion conditionwas 4.1%. For a clear representation, only three represent-
ative optimal force tracking samples with the most different optimal
timings from the validation condition are shown in Fig. 4C, whereas
all optimal force profiles are shown in fig. S4.

Metabolic landscape and probability of
improvement landscape
The representative participant-specific metabolic landscapes (Fig. 4, A
to C) further illustrated the interparticipant variability with respect to
timings. The participants’metabolic landscapes, represented as Gaussian
process posteriors, showed substantial visual differences. To quantitatively
summarize the differences between the participants’metabolic landscapes,
we computed the probability that each participant’s optimal parameters
would reduce the metabolic cost of other participants according to each
participant’s posterior landscape (Fig. 4, D to F). This analysis suggested
that, in general, one participant’s optimal peak and offset timing were
likely to be suboptimal for another.
http://robotics.sciencem
ag
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DISCUSSION
With the optimized hip extension assistance obtained fromHILBayesian
optimization, the average net metabolic reduction was 17.4% compared
with walking without the device. Using a similar hip exosuit to assist
loaded walking, our group previously showed an average reduction of
8.5% compared with an unpowered condition (10). Another study with
a tethered hip exoskeleton using pneumatic actuators demonstrated
Ding et al., Sci. Robot. 3, eaar5438 (2018) 28 February 2018
average metabolic reductions of 10.3 and 9.7% when assisting either
hip extension or hip flexion, respectively, comparedwith an unpowered
condition (7). Last, a recent study assisting both hip extension and flexion
simultaneously with an autonomous electromechanical hip exoskeleton
reported an average metabolic reduction of 21.1% when compared
with walking without an exoskeleton (4). The result of this study sug-
gests that substantial metabolic reductions can be achieved by solely
assisting hip extension with optimized assistance and indicates the
potential improvement of assisting both flexion and extension with
hip assistive devices.

The average convergence time of our HIL Bayesian optimization
was 21.4min. Short convergence time could be important in some cases
tomitigatewidely observed inaccuracies stemming fromcardiopulmonary
drift and participant fatigue (22). This result also suggests that HIL
Bayesian optimization could be applied towearable devices designed for
strenuous activities or clinical populationswith limitedphysical strength—
both cases where participant endurance is a limiting factor (23).

The variability shown in the optimized assistance profiles demon-
strates the importance of individualization. The participant-specific
metabolic landscapes and the probability of improvement generated
by the Bayesian optimization further illustrate the interparticipant var-
iability with respect to timings.

The nonparametric HIL Bayesian optimization was more effective
than the model-based naïve grid search. We illustrated this problem by
generating quadratic approximations with the first 10 iterations of the
data from the optimization process, which was the average amount of
data needed for the convergence of Bayesian optimization (table S5).
The comparison showed that the model-based naïve grid search made
unreasonable estimates of optimal parameter value in the highmeasure-
ment noise environment.
 by guest on F
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Fig. 4. Participant-specific metabolic landscape and probability of improvement landscape. (A to C) Metabolic landscapes (the mean of the metabolic cost posterior
distribution with respect to peak and offset timing) for participants 3, 4, and 6. Diamonds indicate the locations of participant-specific optimal timings. (D to F) Probability of
improvement landscapes (capturing the probability of reducing metabolic cost beyond the identified optimal) for participants 3, 4, and 6.
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The optimized assistance did not maximize the duration of force to
maximize the positive mechanical power for the hip joint. This may be
partially because assistancewith a late offset timingmay hinder hip flex-
ion (32). However, most of the optimal timings for participants were on
the boundaries of the parameter ranges, which may suggest that, with a
larger parameter search area, further reductions inmetabolic cost could
be obtained. Currently, the selected parameter rangewas constrained by
the limited ramp-up speed of assistance with our exosuit and a cautious
approach to ensure that the assistance profile did not greatly exceed limits
of the average range of biological hip extension moment (32). To reduce
the likelihood that the optimal values are caught on the boundaries, future
studies could expand the feasible parameter range by improving the exo-
suit stiffness to increase the ramp-up speed of the assistance and having
participant-specific search areas based on training performance.

Another limitation of the current optimization is the lengthy sam-
pling time for each measurement, which could prevent straightforward
extension to higher dimensional parameterizations. It may be beneficial
to add additional flexibility to the optimization not only to choose the
exploration points but also to adjust the length of sampling time (33). In
addition to adaptive sampling time, it may be useful to use musculo-
skeletal models to provide an initial estimation of the metabolic land-
scape, which could reduce the number of samples required to find
low-cost parameters. In addition, the smoothness and regularity as-
sumptions imposed by the Gaussian process kernel functionmay not
be valid for all metabolic landscapes and wearable devices, but in our ex-
periments, these landscapes were well approximated using a squared ex-
ponential kernel and a single global noise parameter. Last, because
Bayesian optimization uses all available data to compute the posterior
metabolic distribution and acquisition function, additional methods
such as “data forgetting” would have to be used to deal with human
adaption effects (34).

HIL optimization holds promise to improve the performance of
wearable robotic devices for a wide range of tasks. The presented
method shows a substantial metabolic reduction and suggests the pos-
sibility of optimizing wearable devices using low-dimensional control
parameterization. The short convergence timewould enable researchers
to apply this method to individualize control parameters during stren-
uous tasks or for people with limited physical strength or endurance.
Using a noisy respiratory signal as the objective function of the optimi-
zation indicates that thismethod can be applied to other alternate phys-
iological or biological signals, such as using kinematic symmetry to
optimize wearable devices for poststroke patients or using balance-
related measurements to optimize prostheses. The participant-specific
metabolic landscapes and probability of improvement landscapes dem-
onstrate the significant variability between participants and suggest that
participant-specific optimal timing provides the highest probability
of achieving the largest metabolic reduction, further highlighting the
benefit of individualization.
MATERIALS AND METHODS
Experimental design
This was a single-day protocol without training sessions. To minimize
the effects of adaptation, we recruited eight participants who had pre-
vious experience walking with the exosuit at least two times before. Par-
ticipants walked without load on an instrumented treadmill (Bertec) at
1.25 m s−1 wearing a respiratory measurement device (COSMED; fig.
S5). These conditions were chosen partially to lessen fatigue effects of
the relatively long walking protocol, and the constant walking speed
Ding et al., Sci. Robot. 3, eaar5438 (2018) 28 February 2018
allowed the comparisons between studies (7, 10, 11). Each participant
went through five conditions (fig. S6): (i) a 5-min quiet standing con-
dition, (ii) a 5-min no-suit condition, (iii) a 40-min optimization con-
dition intersected by two 3-minwarm-up periods and 5-min rest periods,
(iv) a 5-min validation conditionwith the optimal timing, and (v) a 5-min
no-suit condition. Bothwarm-upperiodswere assistedwalkingwith the
same assistive profiles used in the follow-up iteration of the optimiza-
tion condition. During the no-suit condition, participants walkedwith a
regular pair of pants (mass, 715 g), whichwas chosen to assess themeta-
bolic benefits from walking with active assistance to walking with
normal clothes, similar to configuration in our previous hip assistance
study (10). Resting breaks were given between all conditions besides the
break during the optimization condition. Considering the relatively long
walking time (61min), two no-suit conditions were designed at both the
beginning and the end of the protocol as a visual check of the possible
fatigue reported by the participants.

Participants
Eight healthymale adults (n= 8; age, 30.3 ± 7.1 years;mass, 76.5 ± 8.9 kg;
height, 1.77 ± 0.05 m; mean ± SD; table S3) participated in this study.
Sample sizewas chosen based on the data fromprevious studies (10, 11).
The study was approved by the Harvard Longwood Medical Area In-
stitutional Review Board, and all methods were carried out in accordance
with the approved study protocol. All participants provided written
informed consent before their participation and after the nature and
the possible consequences of the studies were explained.

Soft exosuit
The soft exosuit used in this study was designed to solely assist hip
extension. The textile components of the hip exosuit consisted of a
spandex base layer (mass, 181 g), a waist belt (mass, 275 g; fig. S7),
two thigh braces (mass, 2 × 69 g; fig. S8), and two elastic straps
(mass, 2 × 46 g) for mounting inertial measurement units (IMUs;
mass, 2 × 13 g). Bowden cables and sensor wires including expand-
able braided cable sleeves for each leg (mass, 2 × 328 g) were tied
together at the waist and connected to the actuation platform. The
participant supported about half of the weight of the Bowden cable
assembly. All textile components (size medium) and half of the
weight of the Bowden cable assembly had a total mass of 0.859 kg.
The stiffness evaluation of the soft exosuit used in this study is
shown in (29).

Actuation platform
A tethered actuation system with two modular actuators was used to
generate assistive forces. Each actuator consisted of one customized
frameless brushless motor (Allied Motion), a customized spiroid gear
set (ITWHeartland), a 90-mm-diameter pulley, and other supportive
structures (29). Bowden cable was used to transmit the force from the
actuator to the hip joint.On the actuator side, the Bowden cable sheath
connected to the frame of the pulley cover and the inner cable attached
to the pulley. On the exosuit side, the Bowden cable sheath connected
to the anchor point on the bottom of the waist belt and the inner cable
connected to the anchor point on the top of the thigh piece. When the
actuator retracts, thedistancebetween the two anchor points is shortened,
generating a force to assist hip extension.

Sensing and control
Two IMUs (VN-100 Rugged IMU, VectorNav Technologies) attached
to the front of each thigh detected the maximum thigh flexion angle to
5 of 8
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segment the stride (10, 35). Stride time was measured as the time be-
tween two consecutive maximum hip flexion events (35). By using the
average stride time from the previous two steps, the reference force
profile was scaled for each stride. The actual force signal was measured
by two load cells (LSB200, FUTEKAdvanced Sensor Technology) placed
in series with the Bowden cables on each leg. Combinedwith the actuator
position signals measured by the encoders (AS5134, Ams) mounted on
the back of the customized brushless motors, an admittance controller
with feedforward models was implemented to track the force profiles
with different peak and offset timings. The detailed controller design,
frequency response, and force tracking evaluation with different ramp-
ing speeds are presented in (29).

Instantaneous metabolic estimation
Themetabolic rate was estimated by fitting a first-order dynamicmodel
to 2min of transientmetabolic data (21). Themathematical representa-
tion in the frequency domain takes the form

ZðsÞ ¼ HðsÞRðsÞ ð1Þ

where Z(s) is the measured metabolic cost, R(s) is the instantaneous
metabolic cost f inst in frequency domain, andH(s) is the first-order dy-
namic modelH(s) = 1/(ts + 1) with a time constant t = 42 s (31). In the
discrete-time domain, Eq. 1 can be written as

zðiþ 1Þ ¼ ðt� dtðiÞÞ
t

zðiÞ þ dtðiÞ
t

f inst ð2Þ

where i is the number index of themeasured breath and dt(i) is the time
duration between the ith and (i + 1)th breath. After measuring z and dt
for 2 min, we obtained f inst by first calculating the change of the instan-
taneousmetabolic rate from the last condition and thenminimizing the
error between the model estimation and measurements using least
squares (21).

Bayesian optimization
Bayesian optimization is an efficient global optimization method that is
particularly well suited to optimizing unknown objective functions that
are expensive to evaluate (25–27, 36). It takes advantage of the informa-
tion provided by the time history by computing a posterior distribution
of cost as a function of the optimization variables and then using acqui-
sition functions computed on this posterior to select the next points to
evaluate.A prior belief over the objective function distribution is defined
using mean and covariance functions. The posterior distribution of the
objective function is iteratively computed in closed formwhen new data
become available. Using thismodel, the algorithm balances exploitation
with uncertainty reduction to guide exploration (37).

In our study, we initialized the optimization by evaluating instanta-
neousmetabolic cost f inst for six iterations with different pairs of prefixed
peak and offset timing, which were pseudo-randomly selected from evenly
spaced timing intervals (fig. S9). This initialization is a commonpractice
to avoid biased sampling that could lead to premature convergence (25).
After initial evaluation, the optimization calculated the metabolic land-
scape, f(x), using Gaussian processes (30, 34), where the parameter x =
[xp, xo] consisted of peak and offset timing. Given the calculated land-
scape, the next sampling timing was selected by maximizing EI, which
naturally balances exploration and exploitation (25, 26).With themeta-
bolic rate of the newly sampled timing added to the data set, the meta-
bolic landscapewas refined again for selecting the next sampling timing.
Ding et al., Sci. Robot. 3, eaar5438 (2018) 28 February 2018
This process was repeated for 14 iterations. In total, there were 20 itera-
tions in the optimization process including 6 iterations of initialization,
and fig. S10 shows one sample optimization process described above on
iterations 6, 7, and 20.

The metabolic landscape, f(x), was modeled using a Gaussian pro-
cess. The prior of the Gaussian process is represented by mean, m(x),
and covariance, k(x, x′), functions. As is standard practice, we used zero
mean and the anisotropic squared exponential kernel for the covariance
function (25),

kðx; x′Þ ¼ s2exp � 1
2
ðx � x′ÞMðx � x′Þ

� �
ð3Þ

where s2 is the metabolic rate (signal) variance and M is a diagonal
matrix consisting of the length scale parameters of peak and offset tim-
ing, l1 and l2. Intuitively, the signal variance captures the overall mag-
nitude of the cost function variation, and the length scales capture the
sensitivity of the metabolic rate with respect to changes in peak and
offset timing. Assuming thatmetabolic cost has an additive, independent,
and identically distributed noise, the samples can be expressed as

f instðxÞ ¼ f ðxÞ þ e; e e Nð0; s2noiseÞ ð4Þ

where s2noise is the noise variance. Given the Gaussian process prior and
data setD, the posteriormetabolic cost distributionf inst� was calculated for
a parameter x* as f

instðx�Þ ≡ f inst� eNðE½ f inst� �; s2�Þ. The mean and vari-
ance are calculated as

E½ f inst� � ¼ kT� ðK þ s2noiseIÞ�1y ð5Þ

s2� ¼ kðx�; x�′Þ � kT� ðK þ s2noiseIÞ�1k� ð6Þ

where k* = [k(x1, x*), …, k(xn, x*)]
′ and K is the positive definite kernel

matrix, [K]ij = k(xi, xj).
Weoptimizedhyperparameters (q= [s l1 l2 snoise]) at each iteration

bymaximizing logmarginal likelihood of the data collected (D = {X, y},
X = [x1, …, xn]

T ∈ RN×2, y ¼ ½ f inst1 ;…; f instn �T ∈ RN) using Matlab’s
fmincon function with 10 random initializations to avoid poor local
minima.

The peak and offset timing, xp, xo, were selected by maximizing the
expected reduction in themetabolic cost over the best timing previously
assessedmaxð f best � f inst� ; 0Þ (25). EI, which balanced between predictive
minimum points and high uncertainty (25, 27), took the following form

EI½x�� ¼ ð f best � E½ f inst� �Þfðu�Þ þ s�φðu�Þ ð7Þ

where f best ¼ mini¼1;…;NE½ f instðxiÞ�; u� ¼ ð f best � E½ f inst� �Þ=s�, and
f(⋅) andϕ(⋅) were the cumulative distribution function and probability
density function of the normal distribution, respectively. The EI was set
to zerowhen s*was zero. At each iteration, the next sampling timingwas
selected by maximizing EI using Matlab’s fmincon while enforcing the
constraint that the offset timing be at least 15% later than the peak tim-
ing, xo − xp ≥ 15%. We again used 10 random restarts to avoid poor
localminima.Wenote that, as the dimensionality increases, the number
6 of 8
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of random restart points required to reliably maximize EI would likely
need to increase.

Metabolic measurement and analysis
Respiratory data were collected throughout the protocol. Metabolic
rates from the quiet standing, first no-suit, validation, and second no-
suit conditions were calculated from the last 2 min of carbon dioxide
and oxygen rates using a modified Brockway equation (38). For
the optimization process, the instantaneous metabolic estimations for
each 2-minmeasurement period were also collected. Net metabolic rate
and net metabolic landscape were obtained by subtracting the quiet
standing metabolic rate, then normalizing by each participant’s body
mass. Themetabolic reduction of the validation conditionwas obtained
by subtracting the net metabolic rate of the validation condition from
the netmetabolic rate of the second no-suit condition and then dividing
the result by the net metabolic rate of the second no-suit condition. The
second no-suit condition was chosen for the comparison of metabolic
reduction because it is the closest no-suit condition to the validation
condition. The metabolic reduction of the optimal condition was ob-
tained with the same calculation by replacing the net metabolic rate
of the validation condition with theminimum value from the net meta-
bolic landscape generated by the optimization. One participant’s data
were not included in the metabolic analysis because of fatigue reported
by the participant during the protocol, where the net metabolic rate of
the second no-suit condition increased by 32.4% compared with the
first no-suit condition.

Convergence time analysis
The convergence time for each participant was calculated in a post hoc
analysis (fig. S3 and table S4). We defined the convergence of the opti-
mization with the following two conditions: (i) Two consecutive
iteration-to-iteration changes of maximummetabolic reduction in per-
centage from themetabolic landscape fell below our preset convergence
threshold (tm = 4%), and (ii) two consecutive iteration-to-iteration
changes of hyperparameters from the Gaussian process fell below our
preset convergence threshold (th = 3). The convergence threshold for
the changes ofmetabolic reduction tmwas chosen based on the previous
study (8), whichhas shown an average error of 4%on this instantaneous
metabolic estimation. The convergence threshold th was obtained from
a separate simulation study. For this simulation, a generative model of
metabolic landscape with added noise was first created. The noise was
generated by Matlab’s awgn function with a signal-to-noise ratio of 8.8
obtained from our pilot test (table S1).With thismodel, we ran Bayesian
optimization for 50 iterations and calculated the iteration-to-iteration
changes in themaximummetabolic reduction and the hyperparameters.
Themaximum changes for themetabolic reductionwere set to 2%while
evaluating the changes of all hyperparameters. We repeated the
simulation 100 times and found that the metabolic reduction threshold
was met when the threshold for all hyperparameters was set to 3.

Ground reaction force
Ground reaction forces (GRFs) were collected via the instrumented
split-belt treadmill (Beltec) and synced with the actuation platform using
the motion capture system (Qualisys AB). All the GRF force data were
filtered with a zero-lag fourth-order low-pass Butterworth filtered with a
5- to 15-Hz optimal cutoff frequency that was selected using a custom
residual analysis algorithm (32). A customizedMatlab script was created
using GRFs to segment the percentage of the gait cycle defined by the
maximum hip flexion based on the detected heel strikes.
Ding et al., Sci. Robot. 3, eaar5438 (2018) 28 February 2018
Statistics
Means and SEM of the net metabolic rate were calculated for each con-
dition. According to the Jarque-Bera test (significance level a = 0.05;
Matlab), the collected data followed the normal distribution (P > 0.3).
Therefore, we conducted a mixed-model, two-factor analysis of vari-
ance (ANOVA; random effect, participant; fixed effect, test condition)
to test the effect across different conditions including optimal, valida-
tion, and no-suit conditions (significance level a = 0.05; Matlab). For
the outcome of the ANOVA test, it showed a significant difference of
the netmetabolic rate between conditions.We used paired t tests for the
comparison between the conditions to identify which conditions ex-
acted a significant change in the net metabolic rate (39).
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/3/15/eaar5438/DC1
Fig. S1. Illustration of 1D Gaussian process.
Fig. S2. Simulation results on the number of iterations needed for the optimization.
Fig. S3. Convergence analysis.
Fig. S4. Optimized hip extension force profiles for all participants.
Fig. S5. Experimental setup.
Fig. S6. Experimental protocol.
Fig. S7. Structure of the waist belt component.
Fig. S8. Structure of the thigh brace.
Fig. S9. Pseudo-randomly sampled timings for the initialization of Bayesian optimization.
Fig. S10. Optimization process.
Table S1. Signal-to-noise ratio and variations of metabolic cost of pilot tests.
Table S2. Onset timing.
Table S3. Participant characteristics.
Table S4. Metabolic rates, optimal timing, and convergence timing for each participant.
Table S5. Quadratic approximation of metabolic landscape.
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